
Toward Using ChatGPT to Generate Theme-Relevant
Simulated Storyworlds
Shi Johnson-Bey1, M.S., Michael Mateas1, Ph.D. and Noah Wardrip-Fruin1, Ph.D.

1University of California Santa Cruz, 1156 High St., Santa Cruz, California 95064, USA

Abstract
While simulated story worlds have proven to be fertile ground for emergent storytelling in research and in commercial game
genres such as life simulation, 4X, and roguelikes, they have also proven challenging to create. Building these simulations can
involve hand-authoring large amounts of content that provide context for character decision-making, ensure variation among
generated narratives, and align with the simulation’s narrative setting and themes. This short paper discusses preliminary
work on leveraging ChatGPT to generate theme-relevant content for Neighborly, a character-driven settlement simulation
framework designed for narrative generation. Given a textual description of the narrative setting, we demonstrate how
ChatGPT can be used to generate Python code for characters’ businesses, occupations, and traits. We discuss challenges with
development and future work.

Keywords
ChatGPT, World Simulation, Emergent Storytelling, Mixed-initiative content generation

1. Introduction
Simulated story worlds like those seen in commercial
games such as The Sims, Dwarf Fortress, Caves of Qud,
and Civilization have shown to be powerful tools for
emergent storytelling. They use a combination of sim-
ulated systems, autonomous characters, and procedural
narrative systems to generate unique-feeling and engag-
ing emergent experiences. However, authoring enough
content to maintain the illusion of a living world is one
of the medium’s core challenges and is an active area of
research in interactive storytelling[1]. Simulated story-
worlds require a trove of hand-authored content (charac-
ter types, cultures, character jobs/roles, object types, and
social rules) to cultivate narrative themes and provide
context for non-player character (NPC) decision-making
processes.

Mixed-initiative content generation is a promising so-
lution to relieving this authoring burden. This process
involves partnering humans with computational systems
to create content that neither could easily create inde-
pendently [2, 3]. Usually, this collaboration involves a
computational system generating potential content, pro-
viding that content to the human user for review, and
refining its outputs based on the human partner’s feed-
back. Sometimes the roles are slightly reversed as the
computational systemmay provide feedback and insights
about designs presented by the human. Research in this

AIIDE Workshop on Experimental Artificial Intelligence in Games,
October 08, 2023, University of Utah, Utah, USA
Envelope-Open ismajohn@ucsc.edu (S. Johnson-Bey); mmateas@ucsc.edu
(M. Mateas); nwardrip@ucsc.edu (N. Wardrip-Fruin)
GLOBE https://shijbey.github.io/ (S. Johnson-Bey)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

area has explored level generation[4], automated game
design[5], and interactive storytelling[6, 7].

Large-language model (LLM) applications like Chat-
GPT have recently gained popularity for their versatile
and unprecedented performance at various tasks, includ-
ing classification, question answering, text generation,
summarization, and image generation. Companies such
as NVIDIA and Unity have announced new LLM-enabled
technology stacks that enable game developers to create
a wide array of content ranging from animations to code
to autonomous virtual characters [8, 9].

This short paper discusses preliminary work on lever-
aging ChatGPT to generate narrative theme-relevant con-
tent for Neighborly, a character-driven settlement sim-
ulation framework for narrative generation[10]. Given
a textual description of the narrative setting, we show
how ChatGPT can be used to generate Python code for
characters’ businesses, occupations, and traits. Our goal
is to eventually enable users to create simulations from
natural language prompts. We outline the beginning
stages of our generation pipeline and discuss challenges
with development and future work.

2. Related work

2.1. LLMs for interactive storytelling
LLM technology became popular for interactive story-
telling following the release of AI Dungeon in 2019. The
creators trained a GPT-3 model on choose-your-own-
adventure stories and used it to generate interactive fic-
tion experiences[11]. Since then, we have seen LLMs
applied to other storytelling tasks like mixed-initiative
storytelling [12], AI-enabled editors for story writing[13],

mailto:ismajohn@ucsc.edu
mailto:mmateas@ucsc.edu
mailto:nwardrip@ucsc.edu
https://shijbey.github.io/
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

interactive story generation[14], and dialog generation
for NPCs in table-top role-playing games [15].

2.2. Generative AI in the Games industry
Companies within the commercial games industry are
also using LLMs to power new generative AI tools aimed
at game developers. Unity recently releasedUnityMuse, a
tool to improve developer productivity by allowing users
to generate assets (textures, models, animations, etc.)
using a natural language interface[8]. Another example
is NVIDIA ACE for Games, a suite of tools that leverage
LLMs and other AI technologies to help game developers
create hyperrealistic virtual characters in their games[9].

2.3. ChatGPT
ChatGPT is an interactive LLM application within the
family of generative pre-trained transformer models re-
leased by OpenAI. Its main user interface resembles a
messaging application, and users can send natural lan-
guage prompts to the model. It was trained using re-
inforcement learning techniques [16], allowing it to re-
spond fluently to input from the user. One of its greatest
strengths is its ability to reason about semantic relation-
ships.

2.4. ChatGPT for simulated storyworlds
ChatGPT has started to garner some attention as a po-
tential tool for storytelling with simulated story worlds.
Méndez and Gervás explored using ChatGPT for story
sifting[17] – searching for interesting narrative material
within a repository of simulated story world data [18].
They found that ChatGPT returned proper prose and
performed well at summarization tasks. However, it of-
ten embellished the summaries, and the authors found
it challenging to influence/bias ChatGPT toward desired
stories and narrative themes.

Park et al. (2023) [19] used ChatGPT to power all sim-
ulation aspects, including character behavior and the
behavior/state of inanimate objects like toasters and re-
frigerators. The core of their system was the generative
agents architecture that used ChatGPT to handle how
characters observe, remember, plan, reflect, and act upon
their environment. This project showcased the potential
breadth of applications for ChatGPTwithin simulated sto-
ryworlds, especially their potential as their aptitude for
common sense reasoning and understanding of semantic
relationships. However, the main drawbacks of their ap-
proach were (1) the system was not playable due to long
runtimes and a lack of resource/progression tracking and
(2) the lack of an authoring interface that integrated with
existing game development processes. ChatGPT does not
keep track of values well. Ideally, these things should

be handled by simulated systems implemented using a
general-purpose programming language.

3. Generating simulation content
with ChatGPT

This section describes our preliminary work using chat-
GPT to generate content for simulated story worlds. We
want to explore how LLMs, like ChatGPT, can support
creators during the rapid prototyping and iteration phase
of simulation development. When brainstorming con-
tent, designers might spend time consulting multiple ref-
erences for inspiration. Generating initial content gives
designers a starting point to jumpstart the rest of their
design process. Our goals with this project are to:

• Generate content that fits the narrative setting of
the story world.

• Output editable source code that integrates with
the existing development ecosystem.

• Evaluate if this improves the prototyping work-
flow for simulation designers.

Within this short paper, we only cover the first of
our three goals. The evaluation is saved for a future
full-length publication. We are working on turning our
generation procedure into a single cohesive software tool.
A fully-featured version of this tool might operate like a
virtual pair programmer that provides suggestions and
feedback during the development process to help ensure
user meet their authorial goals.

Thus far, our tool generates character spawn infor-
mation, business types, occupation types, and character
traits forNeighborly, a character-driven simulation frame-
work for narrative generation [10]. Neighborly simulates
the lives and relationships of generations of characters
in a generated settlement. Characters are born, grow
older, work jobs, form relationships, have families, and
engage in a myriad of life events. We chose Neighborly
because it is Python-based and allows us to load custom
simulation data using plugins. We chose to use ChatGPT
because, without any fine-tuning, it performs well at out-
putting structured information and code. We wanted to
focus more on developing the data generation pipeline.
So, rather than fine-tune a GPT-2 model on Neighborly-
specific APIs, we chose to ask ChatGPT to fill JSON tem-
plates that we could post-process into Python source code.
Also, this allowed us to explore what domain knowledge
we could leverage from ChatGPT without additional tun-
ing.

Content generation starts with a natural language de-
scription of the narrative setting of the simulation. For
instance, “A cyberpunk city”. This initial prompt is then
used inside a collection of follow-up prompts. We asked

Figure 1: A flow chart of the data generation pipeline. ChatGPT may be used multiple times to generate additional data that
depends on ChatGPT’s previous response. The final Python output is saved to files for later use.

that ChatGPT output its responses as structured JSON.
This data format allowed us to post-process intermedi-
ate results and send follow-up requests to ChatGPT for
additional information. Once we have all the required in-
formation, we generate Python files by hydrating Jinja21

templates using the combined JSON output from Chat-
GPT. The final product is valid Python source code that
can be edited in a text editor and packaged inside a Neigh-
borly plugin for later use. Figure 3.3 shows the existing
data generation pipeline. If users have conflicts with
or want to adjust the content generated by the pipeline,
they can refine their initial prompt or edit the produced
Python code.

We focused on the three major content areas for theme-
building in Neighborly: businesses and occupations, char-
acters, and character traits. Based on what Neighborly’s
APIs provide, these were the most straightforward to
generate content for since they rely on static configura-
tion data. They are not directly responsible for narra-
tive generation, but they affect the growth of character
relationships and support the setting of the simulated
story world. Generating life events for characters would
have had a more direct impact on narrative generation.
However, Neighborly does not have a declarative way
to define event types and their preconditions and post
effects.

3.1. Generating businesses and
occupations

First, we attempted to generate new business types for
characters to own and work at. In Neighborly, these set
the tone for which characters interact and provide ad-
ditional context to storytelling. Generating new types
was a two-step process as business types define occu-
pations that may need to be generated. After ChatGPT
provides business types in the format provided in the
listing below, we scrape the owner and employee types
and re-query ChatGPT configuration for those occupa-

1https://jinja.palletsprojects.com/en/3.0.x/

tions. When all data has been collected, it is passed to
Jinja to create appropriate Python source code files. We
did not have any issues with this generation phase and
were surprised by ChatGPT’s ability to create arbitrary
numbers, occupation names, and business services (See
Listing 1).

Listing 1: The JSON output provided by ChatGPT for a
business that might exist in a cyber punk world.
(See prompt listing 2).

[
{

” name ” : ” Cybe rne t i c
Augmentat ion C l i n i c

” owner_type ” : ” Cybe rne t i c
Surgeon ” ,

” employee_ types ” : {
” Cybe rne t i c Te chn i c i an ” :

4 ,
” Adm in i s t r a t i v e A s s i s t a n t

” : 2 ,
” R e c e p t i o n i s t ” : 1 ,

} ,
” s e r v i c e s ” : [” Cybe rne t i c

imp l an t s ” , ” Neura l
Enhancements ” , ”
Augmentat ion c o n s u l t a t i o n s
”] ,

} ,
. . .

]

3.2. Generating characters
Next, we tried generating configurations for the types
of characters that spawn into the simulation. We found
that ChatGPT had trouble with this task. It likes to gen-
erate the typical fantasy races (Humans, Elves, Orcs, etc.)
found in role-playing games, even if the setting is not
entirely appropriate for those categories. Also, it has

https://jinja.palletsprojects.com/en/3.0.x/

trouble differentiating between character types and roles.
For example, in response to the prompt, “List races of
characters that exist within a cyberpunk futuristic story
world?”, we received output that included humans, cy-
borgs, and androids, but also definitions for organizations
and roles such as “street gangs”, “company executives”,
and “Fixers”.

Modifying the phrasing also did not help as expected.
Swapping “race” for character type resulted in a list of
narrative-inspired roles like hero, villain, andmentor. Fur-
thermore, swapping “race” for species resulted in Chat-
GPT generating entirely made-up fantasy-style species
like “Ferbles”, “Aquamids”, and “Plantlings” which did
not fit the theme.

One solution to this problem was changing ChatGPT’s
task from generating character types to determining
which types from a specified list are most appropriate
for appearing in the given setting and relative spawn
frequencies based on the other entries.

3.3. Generating character traits
The last content type we experimented with was charac-
ter traits. Crusader Kings extensively uses traits to drive
character relationship development and other mechanics.
However, creating a list of traits and determining their
effects relative to each other is time-consuming manual
work. We offloaded this to ChatGPT and had it provide
JSON feedback that included trait names, descriptions,
and social rules for modifying the platonic and romantic
compatibility of two given characters (see Figure 3.3).

4. Discussion
Overall, ChatGPT performs well at generating business
and occupation definitions. Occasionally, it will misin-
terpret a configuration parameter. However, this can be
easily corrected by the human author. Also, validation
safeguards could be put in place during content gener-
ation to notify the user of any errors before final code
generation.

Even with the occasional error, generating content this
way was still much faster than authoring all the defini-
tions by hand. ChatGPT really shines when generating
fuzzy values for configuration settings such as the rela-
tive socioeconomic status of occupations, the lifespan of
businesses, and the relative numbers of employee types.
It allows authors to quickly reach the point of having a
running simulation, allowing them to tweak the values
at a later time.

ChatGPT’s ability to create arbitrary service types for
business was surprising and feels like it adds to building
up the theme of a Cyberpunk world. However, since AI
systems use the list of services for character decision-

Figure 2: An “Optimistic” trait generated by ChatGPT with a
description and other metadata to be fed into the templating
engine to produce Python code. (See prompt listing 4).

making, arbitrary string values can easily become an
authoring nightmare. Adding 10 new business types
could yield 10 to 30+ new service types that they would
need to author new simulation rules. If we constrain the
list of services to be selected from a fixed set, then we
could create new business types that leverage existing
rules, further simplifying content authoring.

This work needs to be evaluated in a user study. Ten-
tatively, the plan is to present participants with two au-
thoring tasks. The first task would ask participants to
hand-author a subset of simulation content, and the sec-
ond would ask them to generate it with the tool and
modify the results. We believe that users will find the
ChatGPT-powered workflow takes significantly less time.

5. Conclusion
This short paper presents preliminary work on using
ChatGPT to generate theme-relevant content for an
agent-based social simulation. We aimed to simplify the
content prototyping process by leveraging ChatGPT’s se-
mantic knowledge to generate Python code. We describe
our pipeline for generating characters, businesses, and
character traits from a short description of a designer’s
narrative setting/theme. We are working on turning our
generation pipeline into a single tool to facilitate user

studies. As future work, we would like to explore us-
ing an LLM to generate the storylet-style events that
Neighborly uses for narrative generation.

References
[1] C. Hargood, D. E. Millard, A. Mitchell, U. Spierling,

The authoring problem: An introduction, in: The
Authoring Problem: Challenges in Supporting Au-
thoring for Interactive Digital Narratives, Springer,
2023, pp. 1–13.

[2] G. N. Yannakakis, A. Liapis, C. Alexopoulos, Mixed-
initiative co-creativity, Foundations of Digital
Games (2014).

[3] A. Liapis, G. Smith, N. Shaker, Mixed-initiative
content creation, Procedural content generation in
games (2016) 195–214.

[4] G. Smith, J. Whitehead, M. Mateas, Tanagra: A
mixed-initiative level design tool, in: Proceedings
of the Fifth International Conference on the Foun-
dations of Digital Games, 2010, pp. 209–216.

[5] S. Cardinale, M. Cook, S. Colton, Ai-driven sonifi-
cation of automatically designed games (2022).

[6] M. Kreminski, M. Dickinson, N. Wardrip-Fruin,
M. Mateas, Loose ends: a mixed-initiative creative
interface for playful storytelling, in: Proceedings
of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 18,
2022, pp. 120–128.

[7] A. Alvarez, J. Font, J. Togelius, Story designer: To-
wards a mixed-initiative tool to create narrative
structures, in: Proceedings of the 17th Interna-
tional Conference on the Foundations of Digital
Games, 2022, pp. 1–9.

[8] M. Whitten, Introducing unity muse and unity
sentis, ai-powered creativity, Unity Blog (2023).
URL: https://blog.unity.com/engine-platform/
introducing-unity-muse-and-unity-sentis-ai.

[9] A. Burnes, Introducing nvidia ace for games
- spark life into virtual characters with gen-
erative ai, NVIDIA GeForce (2023). URL:
https://www.nvidia.com/en-us/geforce/news/
nvidia-ace-for-games-generative-ai-npcs/.

[10] S. Johnson-Bey, M. J. Nelson, M. Mateas, Neigh-
borly: A sandbox for simulation-based emergent
narrative, in: 2022 IEEE Conference on Games
(CoG), IEEE, 2022, pp. 425–432.

[11] Latitude, Ai dungeon, 2019.
[12] E. Nichols, L. Gao, R. Gomez, Collaborative story-

telling with large-scale neural language models, in:
Proceedings of the 13th ACM SIGGRAPH Confer-
ence on Motion, Interaction and Games, 2020, pp.
1–10.

[13] A. Yuan, A. Coenen, E. Reif, D. Ippolito, Word-

craft: story writing with large language models, in:
27th International Conference on Intelligent User
Interfaces, 2022, pp. 841–852.

[14] J. Freiknecht, W. Effelsberg, Procedural generation
of interactive stories using language models, in:
Proceedings of the 15th International Conference
on the Foundations of Digital Games, 2020, pp. 1–8.

[15] J. Kelly, M. Mateas, N. Wardrip-Fruin, Towards
computational support with language models for
ttrpg game masters, in: Proceedings of the 18th
International Conference on the Foundations of
Digital Games, 2023, pp. 1–4.

[16] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown,
A. Radford, D. Amodei, P. Christiano, G. Irving,
Fine-tuning language models from human prefer-
ences, arXiv preprint arXiv:1909.08593 (2019).

[17] G. Méndez, P. Gervás, Using chatgpt for story sift-
ing in narrative generation, International Confer-
ence on Computational Creativity (2023).

[18] J. Ryan, Curating simulated storyworlds, University
of California, Santa Cruz, 2018.

[19] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris,
P. Liang, M. S. Bernstein, Generative agents: Inter-
active simulacra of human behavior, arXiv preprint
arXiv:2304.03442 (2023).

A. Appendix

Listing 2: Prompt for eliciting business types.

L i s t the type s o f b u s i n e s s e s tha t may
e x i s t i n a CyberPunk c i t y , what
s e r v i c e s they o f f e r (as a l i s t o f
s i n g l e words) , the j ob t i t l e o f the
owner , the j ob t i t l e s o f employees ,
and the number o f employees . Use the
f o l l ow i n g YAML temp la t e :

name : < bu s i n e s s type >
components :

Name :
va l u e : < bu s i n e s s name>

Bus ine s s :
owner_type : <owner j ob t i t l e >
employee_types :

< employee t i t l e > : < quant i ty >
<employee t i t l e > : < quant i ty >
. . .

S e r v i c e s :
s e r v i c e s : < s e r v i c e , s e r v i c e , . . . >

https://blog.unity.com/engine-platform/introducing-unity-muse-and-unity-sentis-ai
https://blog.unity.com/engine-platform/introducing-unity-muse-and-unity-sentis-ai
https://www.nvidia.com/en-us/geforce/news/nvidia-ace-for-games-generative-ai-npcs/
https://www.nvidia.com/en-us/geforce/news/nvidia-ace-for-games-generative-ai-npcs/

Listing 3: Prompt for eliciting occupation status levels.

L i s t the type s o f o c cupa t i on s tha t e x i s t
i n a CyberPunk c i t y and t h e i r
r e l a t i v e s o c i a l s t a t u s on a s c a l e
from 1 to 5 with 5 be ing the h i gh e s t .

Use the f o l l ow i n g temp la t e :
[

{
”name ” : ” < oc cupa t i on name>”
” s o c i a l s t a t u s ” : < s o c i a l s t a t u s >

} ,
. . .

]

Listing 4: Prompt for eliciting character trait types.

Generate a l i s t o f c h a r a c t e r t r a i t s f o r
NPCs in a s imu l a t i o n . The l i s t shou ld
i n c l u d e the name o f the t r a i t , a

s ho r t d e s c r i p t i o n , and a l i s t o f
o the r t r a i t s t ha t i t i s i n c ompa t i b l e
with . Each en t ry shou ld a l s o i n c l u d e
a l i s t o f r e l a t i o n s h i p mod i f i e r s t ha t
l i s t the t r a i t o f an i n t e r l o c u t o r

and co r r e spond ing romant i c and
p l a t o n i c c omp a t i b i l i t y mod i f i e r s on a
s c a l e [−5 , 5] . Return the output as

v a l i d JSON .

Example :
[

{
”name ” : ” F r i e n d l y ” ,
” d e s c r i p t i o n ” : ” Th i s c h a r a c t e r

n a t u r a l l y g e t s a long with
o the r s ,

” i n c ompa t i b l e _w i th ” : [”Mean ” ,
. . .] ,

” r e l a t i o n s h i p _m o d i f i e r s ” : [
{

” h a s _ t r a i t ” : ” F r i e n d l y ” ,
” r oman t i c _ c ompa t i b i l i t y :

0 ,
” p l a t o n i c _ c omp a t i b i l i t y :

3 ,
} ,
. . .

]
} ,
. . .

]

	1 Introduction
	2 Related work
	2.1 LLMs for interactive storytelling
	2.2 Generative AI in the Games industry
	2.3 ChatGPT
	2.4 ChatGPT for simulated storyworlds

	3 Generating simulation content with ChatGPT
	3.1 Generating businesses and occupations
	3.2 Generating characters
	3.3 Generating character traits

	4 Discussion
	5 Conclusion
	A Appendix

